您现在的位置是:首页» 生活» 最优无偏估计量怎么算,如何判断是有偏估计还是无偏估计

最优无偏估计量怎么算,如何判断是有偏估计还是无偏估计

2023-09-15 11:50:30
今天小编为大家分享生活中的小常识、日常问题解答等相关内容,希望能够帮助大家。无偏估计有效性,无偏估计怎么算这个很多人还不知道,现在让我们一起来看看吧!1、如果ξ~P(λ),那么E(ξ)= D(ξ)= λ其中P(λ)表示泊松分布无偏估计量的定义是:设(ξ∧)是ξ的一个估计量,若E(ξ∧)=ξ ,则称ξ∧是ξ的无偏估计量下面说明题目中的四个估计量都是λ的无偏估计量。2、首先,因为ξξ2、ξ3 都是取自参数为λ的泊松总体的样本,独立同分布,所以它们的期望和方差都是λ ,则(1)无偏性E(λ1∧)= E(ξ1)=

今天小编为大家分享生活中的小常识、日常问题解答等相关内容,希望能够帮助大家。

无偏估计有效性,无偏估计怎么算这个很多人还不知道,现在让我们一起来看看吧!

1、如果ξ~P(λ),那么E(ξ)= D(ξ)= λ其中P(λ)表示泊松分布无偏估计量的定义是:设(ξ∧)是ξ的一个估计量,若E(ξ∧)=ξ ,则称ξ∧是ξ的无偏估计量下面说明题目中的四个估计量都是λ的无偏估计量。

2、首先,因为ξξ2、ξ3 都是取自参数为λ的泊松总体的样本,独立同分布,所以它们的期望和方差都是λ ,则(1)无偏性E(λ1∧)= E(ξ1)= λE(λ2∧)= E[(ξ1+ξ2)/2]= (λ+λ)/2 = λE(λ3∧)= E[(ξ1+2*ξ2)/3]= (λ+2λ)/3 = λE(λ4∧)= E[(ξ1+ξ2+ξ3)/3]= (λ+λ+λ)/3 = λ (2)有效性,即最小方差性D(λ1∧)= D(ξ1)= λD(λ2∧)= D[(ξ1+ξ2)/2]= [D(ξ1)+D(ξ2)]/4= (λ+λ)/4 = λ/2D(λ3∧)= D[(ξ1+2*ξ2)/3]= [D(ξ1)+4D(ξ2)]/9= (λ+4λ)/9 = 5λ/9D(λ4∧)= D[(ξ1+ξ2+ξ3)/3]= [D(ξ1+ξ2+ξ3)]/9 =(λ+λ+λ)/9 = λ/3其中 D(λ4∧)= λ/3 最小,所以无偏估计量 λ4∧最有效。

本文到此分享完毕,希望对大家有所帮助。

Www.yiLeen.com.CN艺莲園提供生活百科,美食,购物,旅游,房产,交通,家居,数码,科技,财经,教育,健康,娱乐,历史,汽车,生活消费门户网站

本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

联系邮箱:773537036@qq.com

标签: 有效性